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Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), 
as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 
Although altered responses to tactile stimuli are observed in over 60% of individuals 
with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD 
has a strong genetic component and genetic mouse models can provide valuable in-
sights into the mechanisms underlying tactile abnormalities in ASD. This review criti-
cally addresses recent findings regarding tactile processing deficits found in mouse 
models of ASD, with a focus on behavioral, anatomical, and functional alterations. 
Particular attention was given to cellular and circuit-level functional alterations, both 
in the peripheral and central nervous systems, with the objective of highlighting possi-
ble convergence mechanisms across models. By elucidating the impact of mutations in 
ASD candidate genes on somatosensory circuits and correlating them with behavioral 
phenotypes, this review significantly advances our understanding of tactile deficits 
in ASD. Such insights not only broaden our comprehension but also pave the way for 
future therapeutic interventions.
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1  |  INTRODUC TION

Autism spectrum disorder (ASD) is a group of neurodevelopmental 
disorders characterized by alterations in social interaction, repeti-
tive behaviors and interests, that include atypical sensory responses 
(American Psychiatric Association, 2013). ASD is typically diagnosed 
within the first 3 years of life, with symptoms persisting into adult-
hood and exhibiting varying degrees of severity across individuals 
along a continuum (American Psychiatric Association,  2013). The 
core behavioral features of ASD can co-occur with other symp-
toms such as emotional deficits, anxiety and depression, signs of 
aggression, intellectual disability, speech and language delay, motor 
dysfunction, hyperactivity, epilepsy, sleep disturbances, metabolic 
disorders, and gastrointestinal problems (Balasco et al., 2020; Lord 
et al., 2018; Reis & Monteiro, 2024; Takumi et al., 2020). Atypical 
sensory responses are often observed in ASD, with approximately 
90% of those afflicted showing altered responses to visual, auditory, 
olfactory, gustatory, or tactile stimuli (Balasco et al., 2020). Because 
sensory impairments are observed very early in ASD, they antici-
pate (and, perhaps, underlie) social deficits (Baranek et al., 2013). In 
fact, a correlation has been observed between the severity of sen-
sory disruptions and behavioral phenotypes in individuals with ASD 
(Thye et al., 2018). In multiple species, touch is closely linked to the 
development of communication and social behaviors (Hertenstein 
et al., 2007) and is essential for the neurodevelopment of neocorti-
cal areas where sensory stimuli are represented, such as the somato-
sensory cortex (Carozza & Leong, 2021). Therefore, altered tactile 
processing takes special significance in ASD, potentially impacting 
human bonding and environment exploration and causing social 
withdrawal.

Altered responses to tactile stimuli are observed in 60% of ASD 
patients displaying sensory abnormalities (Tomchek & Dunn, 2007). 
Different studies involving self- and parent questionnaires and in-
terviews, as well as direct observation of behavior, have identified 
altered behavioral responses to tactile stimuli in the form of lower 
or increased detection thresholds, avoidance/defensive behaviors, 
lack of habituation to repetitive stimuli, as well as abnormal tactile-
seeking behavior (Espenhahn et  al.,  2023; Foss-Feig et  al.,  2012; 
McKernan et  al.,  2020; Puts et  al.,  2014; Rogers et  al.,  2003; 
Tomchek & Dunn, 2007). Psychophysics studies with both children 
and adults diagnosed with ASD also reported altered behavioral 
responses to electrical, piezo-electrical, and vibro-tactile stimula-
tion applied to body regions such as the fingers, palm, or forearm 
(Cascio et al., 2008; Failla et al., 2017; Sapey-Triomphe et al., 2019). 
A few studies have also found altered functional responses of the 
somatosensory system in response to tactile stimulation in ASD pa-
tients using electroencephalography (EEG; Espenhahn et al., 2021), 
magnetoencephalography (MEG; Khan et al., 2015), and functional 
magnetic resonance imaging (fMRI; Kaiser et  al.,  2016). However, 
the neurophysiological correlates of these alterations remain poorly 
understood.

One approach to studying the neurobiology of ASD and unravel-
ing its functional impact on brain circuits is to conduct investigations 

on animal models. Despite its complex etiology, and potential multi-
factorial origin, ASD has a strong genetic component with 20–30% 
of the cases being associated with de novo mutations in more than 
1000 genes (Constantino et al., 2010; Le Couteur et al., 1995; Sandin 
et al., 2014; Volfovsky, 2024). Furthermore, there is a significantly 
higher concordance rate in monozygotic twins when compared with 
dizygotic twins (Sandin et al., 2014), and ASD prevalence tends to 
cluster in family trees (Lord et al., 2018). Of note, monogenic muta-
tions in particular genes are highly penetrant and account for at least 
5% of ASD cases (Yoo,  2015). They are typically associated with 
other congenital conditions such as Angelman, Fragile-X, Rett, and 
Phelan-McDermid Syndromes, where ASD features co-occur with 
other symptoms (Lord et al., 2018). Rodents carrying specific muta-
tions in ASD candidate genes, such as Shank3, Fmr1, and Mecp2, can 
play a critical role in the investigation of tactile sensory alterations in 
ASD. These animal models display several ASD-like behaviors, such 
as increased anxiety, abnormal social behavior, deficits in learning 
and memory (Gemelli et al., 2006; Peça et al., 2011; Saré et al., 2019), 
as well as altered sensory responses at functional and behavioral 
levels (Chen et al., 2020; He et al., 2017; Orefice et al., 2016; Zhang 
et al., 2014). Tactile deficits, however, have received far less atten-
tion in these models compared to impairments in other sensory mo-
dalities, such as hearing. Here, we review recent studies focusing on 
behavioral, histological, and functional correlates of tactile sensory 
deficits in genetic mouse models of ASD.

2  |  PROCESSING OF TAC TILE STIMULI BY 
THE SOMATOSENSORY SYSTEM

The somatosensory system is characterized by three fundamental 
primary functions: proprioception (sense of oneself), interoception 
(visceral sensation), and exteroception (sense of interaction with 
the outside world; Mundy et al., 2010). The transduction of touch 
by the sensory afferents enervating the skin is the core function of 
the exteroceptive branch in humans. As a result, the somatosensory 
system includes a variety of modalities, pathways, and receptors 
to translate a wide and dynamic range of tactile inputs that enable 
object recognition, texture discrimination, sensorimotor feedback, 
and social exchange (Abraira & Ginty, 2013). Stimulus detection on 
glabrous skin occurs via specialized mechanosensory cells, called 
low-threshold mechanoreceptors (LTMR), that respond to low-force 
indentation of the skin. These mechanosensory neurons arising from 
the dorsal root ganglion (DRG) have end organ structures in the skin 
called auxiliary cells (Meissner and Pacinian corpuscles, Merkel cells, 
or Ruffini endings), which vary in size, shape, morphology, and loca-
tion in the skin and are fundamental for translating different proper-
ties of tactile inputs such as force, frequency, direction, texture, and 
localization (Fleming & Luo,  2013; Nakatani et  al.,  2015; Roudaut 
et al., 2012). Different LTMRs also directly innervate hair follicles and 
are responsible for transducing tactile inputs mediated by hairy skin 
(Roudaut et al., 2012). The main role of mechanosensory neurons is 
to transduce mechanical stimuli into electrophysiological potentials 
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and conduct them to the central nervous system (CNS). Receptor 
potentials (RPs) are locally generated at the skin in LMTRs in re-
sponse to mechanical stimulation in a graded fashion, that is, pro-
portionally to stimulus intensity (Handler & Ginty, 2021; Maksimovic 
et al., 2014). When these reach threshold, action potentials (AP) are 
generated and conducted to the CNS by numerous nerve fibers 
called afferent fibers. Each sub-type of LTMRs has fibers with differ-
ent biophysical properties, including distinct conduction velocities, 
that contribute to multidimensional encoding and transmission of 
tactile information (Handler & Ginty, 2021). The two main ascend-
ing afferent pathways for tactile stimuli in the somatosensory sys-
tem include the dorsal column-medial lemniscus (DCML) pathway, 
for signals coming from the upper and lower body or the posterior 
third of the head; and the trigeminal nerve pathway, for signals com-
ing from the face (Kandel et al., 2013; Purves et al., 2004). Figure 1 
depicts the ascending somatosensory pathways from the skin to the 
brain in humans.

In the DCML pathway, tactile sensory information signaling 
starts when an RP is generated in the skin and reaches the AP 
threshold. The AP then travels along the LTMR cell (or first-order 
neuron or primary somatosensory neuron) axon until it reaches the 
spinal cords' (SC) dorsal horn. From the dorsal horn the pathway con-
tinues according to receptor type and body location in the dorsal 
column nuclei (DCN) up to the brainstem (first synapse), projecting 
ipsilaterally to the medial lemniscus. From the medial lemniscus, 
this neuron travels to the ventral posterior nucleus in the thalamus, 
where it joins with the trigeminal system (second synapse). Finally, 
the third-order neuron projects to cortical regions of the brain, more 
specifically, to layers 4 and 5 (L4/5) of the somatosensory cortex 
(SSC) (R. Barker et al., 2012; Chauhan et al., 2021). Here, the elec-
trical signal is scrutinized and processed in the primary (S1) and 
secondary (S2) somatosensory cortices. In humans, S1 is located 
in the postcentral gyrus and is divided into four different regions: 
Brodmann's area 1, 2, 3a, and 3b, each with their own body map 
(Brodmann & Garey, 2006; Delhaye et al., 2018; Purves et al., 2004). 
Figure 2a shows the organization of human S1. S2 is located in the 
superior bank of the sylvian fissure and the posterior parietal cortex 
(Schluppeck & Francis, 2015).

Human somatosensory pathways are well preserved in ro-
dents, including mice (O'Connor et  al.,  2021; Robertson & Baron-
Cohen,  2017). However, besides having glabrous and hairy skin 
mechanoreceptors as described above, rodents also display spe-
cialized guard hairs, called whisker or vibrissa, located in the snout 
(Ebara et  al.,  2002). These whiskers can move back and forth (a 
movement called whisking) at variable frequencies to scan the 
environment, providing both spatial and textural information 
(Adibi, 2019; Berg & Kleinfeld, 2003). As such, they are critical for 
rodent's tactile exploration of the environment, together with their 
paws. All whiskers are innervated by trigeminal ganglion neurons 
that terminate with end organs that are also found in hairy skin, such 
as Merkel cells, lanceolate endings, and free nerve endings (Bosman 
et al., 2011). Neurons from each whisker follicle ascend through the 
trigeminal pathway in somatotopically organized discrete clusters 

called “barrelettes” in the brainstem nuclei, “barreloids” in the thala-
mus, and “barrels” in the S1, forming the whisker S1 (wS1) (or vibrissa 
S1, vS1, or barrel cortex) (Adibi, 2019; Petersen, 2019; Woolsey & 
Van der Loos, 1970). The wS1 is a somatotopic map in which each 
whisker on the snout is individually represented in the SSC by each 
barrel, allowing precise segregated processing of tactile inputs en-
coded by each whisker (Adibi, 2019). Although wS1 is a specialized 
and highly organized region of rodents' SSC, additional somatotopic 
representation of other body parts, such as the hindlimbs and fore-
limbs or the jaw, can be observed in their S1 (Díaz-Parra et al., 2017; 
Franklin & George, 2007; Sarko et al., 2011). Figure 2b shows the 
organization of the rodent's S1.

3  |  TAC TILE SENSORY PROCESSING 
DEFICITS IN GENETIC MOUSE MODEL S OF 
A SD

Considering that the neural mechanisms underlying sensory pro-
cessing are well conserved between humans and rodents (O'Connor 
et al., 2021; Robertson & Baron-Cohen, 2017), genetic mouse models 
of ASD are of great importance for the investigation of tactile sen-
sory deficits in ASD, with the advantage of having a controlled genetic 
background. Studying tactile deficits in mice can, however, be a hard 
task as altered tactile responses are difficult to measure at the behav-
ioral level. To reach this goal, researchers have to use tactile-guided 
learning paradigms or even adapt some classic rodent behavioral tests, 
such as the novel object recognition (Ennaceur & Delacour, 1988) and 
the pre-pulse inhibition (Ioannidou et al., 2018) tests to rely on tactile 
cues (Orefice et al., 2016, 2019). To study the underlying physiological 
alterations of the somatosensory cortex in mouse models of ASD, stud-
ies have also been employing electrophysiology (Zhang et al., 2014), 
two-photon imaging (He et al., 2017; Michaelson et al., 2018), and opti-
cal imaging of intrinsic signals (OIS) (Arnett et al., 2014) approaches to 
unveil circuit and cell-specific activity alterations. The genetic mouse 
models of ASD used so far to study altered tactile sensitivity are de-
scribed below and summarized in Table 1.

3.1  |  X-linked methyl-CpG-binding protein 2 
(Mecp2)

X-linked methyl-CpG-binding protein 2 (MECP2) gene codes for a 
protein that binds to methylated DNA, thus having an important 
role in gene expression through chromatin architectural regulation 
(Lewis et al., 1992; Ragione et al., 2016; Zachariah & Rastegar, 2012). 
Mutations in this gene are the primary cause of Rett Syndrome 
(RTT), a neurological disorder commonly co-occurring with ASD 
(Rasalam et al., 2005). Mecp2 loss of function mutations can cause 
increased anxiety, abnormal social behavior, and deficits in learning 
and memory in mice (Gemelli et al., 2006; Na et al., 2013).

Mecp2 KO mice, as well as mice with a Mecp2 missense mutation 
commonly observed in Rett patients (Mecp2R306C) (Lyst et al., 2013), 
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4  |    FALCÃO et al.

F I G U R E  1  The human somatosensory system for transmitting and processing tactile stimuli. Tactile sensory stimuli coming from the 
periphery are sent to the brain through somatosensory neurons. Tactile stimuli transduced in the skin ascend through the dorsal column-
medial lemniscus pathway (blue), if they originate in the upper and lower body, and the posterior third of the head or through the trigeminal 
nerve pathway (lilac), if they originate in the face. Tactile stimuli from the skin are transduced by mechanoreceptors and travel through the 
afferent first-order neuron axon that innervates auxiliary cells or hair follicles until they reach the dorsal horn in the spinal cord, through the 
dorsal root. From the dorsal horn, the pathway continues to the dorsal column tract at the back of the spinal cord according to receptor type 
and body location. The pathway continues in the dorsal column nuclei (DCN) until it reaches the medulla, where neurons synapse, stepping 
up to the second-order neuron. This neuron travels to the ventral posterior nucleus in the thalamus, where it joins with the trigeminal 
system, with incoming signals from the face, and the second synapse occurs. The third-order neuron then projects from the thalamus to the 
primary somatosensory cortex (S1).
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show discrimination deficits in a textured version of the novel ob-
ject recognition test (tNORT) without reduction of novelty-seeking 
behavior. Furthermore, increased responses have been reported in 
a tactile version of the pre-pulse inhibition test (tactile PPI), where 
an air puff tactile stimulus precedes the auditory stimulus (Orefice 
et al., 2016, 2019), suggesting hairy skin hypersensitivity. Notably, 
these hypersensitivity phenotypes may be rescued by region-
specific deletion of Mecp2 in the nervous system. Conditional Mecp2 
deletion in forebrain excitatory neurons does not seem to impact 
tNORT and tactile PPI behavioral outcomes, while conditional 

Mecp2 deletion in the SC and primary somatosensory neurons leads 
to deficits in texture discrimination and hairy skin hypersensitivity in 
both behavioral tests (Orefice et al., 2016, 2019). Interestingly, se-
lective expression of Mecp2 in primary somatosensory neurons can 
rescue glabrous and hairy skin sensory deficits in Mecp2 KO mice 
(Orefice et al., 2016).

At the molecular level, Mepc2 KO mice exhibit a >80% de-
crease in GABAA receptor subunit β3 (GABRB3) in LTMR terminals 
located in the dorsal horn, suggesting that tactile hypersensitivity 
in this model may also arise because of insufficient inhibition of 

F I G U R E  2  Human (a) and mice (b) somatosensory cortex functional organization. (a) Brodman areas 1, 2, 3a, and 3b (pink, green, lilac, and 
blue, respectively) of the primary somatosensory cortex (S1), and the secondary somatosensory cortex (S2; yellow) of the human brain. Each 
Brodman area of the S1 has its own homunculus. (b) Spatial location of the S1 (green) lower lip, forelimb (S1FL), hindlimb (S1HL), face and 
whisker, buccal pad, tongue, teeth, and eye cortical area, as well as the S2 (yellow), in the mouse brain.
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TA B L E  1  Principal findings of tactile sensory processing deficits in mouse models of ASD.

Candidate gene Technique Phenotype Age Sex References

Mecp2 tNORT Glabrous skin texture 
discrimination deficits

6 weeks Male (Orefice 
et al., 2016, 
2019)Tactile PPI Hairy skin hypersensitivity

Gabrb3 Von Frey ↓ glabrous skin detection 
thresholds

10–36 weeks Male (DeLorey 
et al., 2011)

↓ glabrous skin detection 
thresholds

17–21 weeks N/A (Ugarte 
et al., 1999)

Ube3a Texture Discrimination Assay Novel tactile environment 
aversion

13–17 weeks Male/Female (McCoy 
et al., 2017)

Syngap1 Go/No-Go task Whisker hyposensitivity 11–13 weeks Male (Michaelson 
et al., 2018)Ca2+ imaging ↓ wS1 L2/3 excitatory and 

inhibitory evoked activity
Male/Female

IOS and Patch Clamp ↓ wS1 L2/3 evoked activity 9 weeks

Go/No-Go task Whisker-dependent task 
learning deficits

8–15 weeks Male/Female (Zhao & 
Kwon, 2023)

Ca2+ imaging ↓ wS1 L2/3 evoked activity

Fmr1 Von Frey ↓ glabrous skin detection 
thresholds

6–12 weeks Male (Martin 
et al., 2022)

tNORT Glabrous skin texture 
discrimination deficits

6 weeks Male (Orefice 
et al., 2016, 
2019)

Whisker texture 
discrimination deficits

3–4 weeks Male (Pyronneau 
et al., 2017)

Gap-Cross Assay Deficits in tactile learning 12–14 weeks Male (Arnett 
et al., 2014)IOS ↑ wS1 evoked receptive field

↑ wS1 L2/3 evoked activity P16, P17, P60 Male (He et al., 2019)

Gap-Cross Assay Altered whisker-guided 
exploration

9–13 weeks Male (Juczewski 
et al., 2016)

In vivo juxtacellullar recordings ↑ wS1 L2/3 PC evoked 
receptive field and inter-
stimulus activity

↓ wS1 L2/3 to L4 evoked 
response latency

Whisker stimulation Tactile defensiveness P15-20, P45-50 Male/Female (Kourdougli 
et al., 2023)Ca2+ imaging ↓ PV+ wS1 spontaneous and 

evoked activity
2 weeks

Silicon Probes ↓ wS1 L2/3 INT spontaneous, 
PC/INT evoked activity

6–13 weeks Male (Antoine 
et al., 2019)

VSD Imaging ↑ S1 spread of whisker 
evoked activity

10–16 weeks Male (Zhang 
et al., 2014)

Patch Clamp ↑ L2/3 PC evoked activity 2 weeks

Whisker stimulation Tactile defensiveness P14-16, P35-41 Male/Female (He et al., 2017)

Patch Clamp Thalamocortical → L4 wS1 
connectivity deficits

P3-4 weeks Male (Harlow 
et al., 2010)

↑ S1HP L2/3 PC excitability 3–6 weeks Male (Bhaskaran 
et al., 2023)↑ S1 spontaneous activity

Altered S1HP L2/3 PC 
evoked receptive field
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somatosensory neurons (Orefice et al., 2019; Samaco et al., 2005). 
Decreased GABRB3 expression has also been previously described 
in the brain of Mecp2−/+ and Mecp2−/y mice (Samaco et  al.,  2005). 
Interestingly, selective restoration of Gabrb3 expression in somato-
sensory neurons improves hairy skin hypersensitivity and texture 
discrimination deficits in Mecp2 KO mice (Orefice et al., 2019).

3.2  |  GABAA receptor subunit β3 (Gabrb3)

Neuronal inhibition in the central nervous system is predomi-
nantly mediated by gamma-aminobutyric acid (GABA; Castellano 
et  al.,  2021; Schmidt-Wilcke et  al.,  2018). GABA type A receptors 

(GABAAR) are GABA-activated receptors composed of five subunits, 
one of which is the β3 subunit, encoded by the GABRB3 gene (Lee & 
Maguire, 2014). Human mutations in this gene have been associated 
with ASD (Abrahams & Geschwind, 2008; Delahanty, 2011; Fatemi 
et al., 2009), and with tactile sensitivity in typically developing chil-
dren (Tavassoli et al., 2012). In mice, Gabrb3 mutations lead to ASD-
like behaviors such as impaired social and exploratory behaviors 
(DeLorey et al., 2008; Samaco et al., 2005).

As for tactile deficits, decreased detection thresholds in re-
sponse to hind paw tactile stimulation with Von Frey filaments 
were observed in male Gabrb3+/− mice, suggesting glabrous skin 
hypersensitivity (DeLorey et al., 2011). Female Gabrb3+/− mice also 
displayed a tendency for decreased thresholds in the same test. 

Candidate gene Technique Phenotype Age Sex References

Shank3 Von Frey ↓ glabrous skin detection 
thresholds

N/A Male/Female (Deemyad 
et al., 2021)

Touch Escape Assay Hairy skin evoked tactile 
defensiveness

N/A N/A (Drapeau 
et al., 2018)

tNORT Glabrous skin texture 
discrimination deficits

6 weeks Male (Orefice 
et al., 2016)

Tactile PPI Hairy skin hypersensitivity

Tactile PPI Hairy skin hypersensitivity 6–8 weeks Male/Female (Orefice 
et al., 2019)tNORT Glabrous skin texture 

discrimination deficits

Whisker texture 
discrimination deficits

13–26 weeks Male/Female (Balasco 
et al., 2021)

c-Fos ↓ S1 whisker evoked

Go/No-Go task Whisker hypersensitivity 17–26 weeks Male/Female (Chen 
et al., 2020)Ca2+ Imaging ↑ excitatory and ↓ inhibitory 

wS1 L2/3 evoked and 
spontaneous activity

Shank2 Von Frey ↑ glabrous skin detection 
thresholds

>8 weeks Male (Ko et al., 2016)

Texture Discrimination Assay ↓ tactile sensitivity N/A Male (Heuvel 
et al., 2023)

En2 Whisker stimulation Whisker hypersensitivity 13–26 weeks Male/Female (Chelini 
et al., 2019)c-Fos ↓ S1 whisker evoked

Cntnap2 Von Frey ↓ glabrous skin detection 
thresholds

8–16 weeks Male/Female (Dawes 
et al., 2018)

N/A Male/Female (Deemyad 
et al., 2021)

tNORT Whisker texture 
discrimination deficits

13–26 weeks Male/Female (Balasco 
et al., 2022)

Silicon Probes ↓ wS1 L2/3 INT evoked 
activity

6–13 weeks Male (Antoine 
et al., 2019)

16p11.2 del Tactile PPI Hairy skin hyposensitivity 6–8 weeks Male/Female (Orefice 
et al., 2019)

Silicon Probes ↓ wS1 L2/3 INT evoked 
activity

6–13 weeks Male (Antoine 
et al., 2019)

Abbreviations: INT, interneuron; IOS, intrinsic optical signal; L2/3, cortical layer 2/3; L4, cortical layer 4; N/A, information not available; PC, principal 
cell; PPI, pre-pulse inhibition; PV, parvalbumin; S1, primary somatosensory cortex; S1HP, hind paw region of the primary somatosensory cortex; 
tNORT, textured novel object recognition test; VSD, voltage-sensitive dye; wS1, whisker primary somatosensory cortex (barrel cortex).

TA B L E  1  (Continued)
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8  |    FALCÃO et al.

Nevertheless, detection thresholds were lower when the missing 
Gabrb3 allele was of paternal origin on both male and female mice. 
In an additional study also using hind paw tactile stimulation with 
Von Frey filaments, Gabrb3 KO mice, but not Gabrb3+/−, exhibited 
decreased detection thresholds (DeLorey et al., 2011). In develop-
ing (P7) mice, selective Gabrb3 deletion in pyramidal neurons (Emx1.
Gabrb3 mice) led to an increase of wS1-responsive neurons following 
whisker tactile stimulation with air puffs (Babij et al., 2023). These 
results point to an overall hyperresponsive state of both glabrous 
skin and whiskers in Gabrb3 deficient mice.

3.3  |  Ubiquitin-protein ligase E3A (Ube3a)

Angelman syndrome (AS), another syndromic form of ASD (Hulbert 
& Jiang, 2016), is caused by loss-of-function mutations or deletions 
in the maternal allele of ubiquitin-protein ligase E3A (UBE3A) gene 
(Rougeulle et al., 1997). UBE3A enzyme targets intracellular proteins 
for degradation through ubiquitination, and interacts with several 
components of the proteasome, a protease complex that performs 
the hydrolysis of client proteins (Lopez et al., 2019; Tanaka, 2009). 
AS patients (including, but not exclusively with a UBE3A mutation) 
have been described to exhibit altered tactile sensitivity and altered 
tactile seeking behaviors (Heald et al., 2020; Walz & Baranek, 2006). 
Ube3a mutant mice show typical ASD phenotypes such as impaired 
social behavior and communication and increased repetitive behav-
iors (Vatsa & Jana, 2018).

Ube3am−/p+ mice showed aversion to novel tactile environments in a 
variation of the 2-chamber conditioned place preference test by choos-
ing to spend significantly less time in a chamber with novel textures 
(water, gravel, stones, or sand; McCoy et al., 2017). Tactile environment 
aversion was not observed upon conditional deletion of the Ube3a ma-
ternal allele in the dorsal root ganglion (Ube3aFLOX/p+), suggesting that the 
observed tactile deficits may be centrally mediated (McCoy et al., 2017). 
Of note, no alterations were observed in detection thresholds using the 
Von Frey test in this model (McCoy et al., 2017).

3.4  |  Synaptic Ras GTPase activating protein 1 
(Syngap1)

SYNGAP1 encodes a Ras GTPase activating protein that plays an 
important role in regulating not only synaptic plasticity but also 
neuronal homeostasis (Jeyabalan & Clement, 2016). Mutations in 
this gene have been associated with intellectual disability comor-
bid with ASD (Berryer et  al.,  2013). Syngap1 haploinsufficiency 
(Syngap1+/−), which can cause autistic traits in humans (O'Roak 
et  al.,  2014), as well as abnormal responses to tactile stimuli 
(Michaelson et al., 2018), leads to significant cognitive, emotional, 
and social deficits in mice (Berryer et al., 2013; Guo et al., 2009; 
Ozkan et al., 2014).

Syngap1+/− mice exhibit both whisker and glabrous skin sensory 
deficits. In the tNORT (called Novel Texture Discrimination task 

in this report), Syngap1+/− mice failed to distinguish novel objects 
based on their texture (Michaelson et  al.,  2018). Syngap1 haploin-
sufficient mice have been shown to have normal object recognition 
memory (Muhia et al., 2010), re-enforcing that the observed discrim-
ination deficits are likely tactile-mediated. Additionally, Syngap1+/− 
also failed to perform a Go/NoGo learning task based on whisker 
deflection perception (Michaelson et  al.,  2018). These behavioral 
alterations were paralleled by a reduction of neuronal activity in re-
sponse to whisker piezo-electric stimulation, both in excitatory and 
inhibitory SSC neurons, particularly in L2/3. The same study also 
showed a reduction of excitatory synapses in upper-lamina SSC neu-
rons and reduced dendritic lengths and densities in both L2/3 and 
L4 neurons of Syngap1+/−. Another study using interneuron-specific 
Syngap1 haploinsufficient mice showed normal neuronal responses 
in wS1 L2/3 with comparable magnitude and temporal dynamics to 
wild-type (WT) mice, but elevated responses to sensory stimuli that 
were irrelevant to a learning task (Zhao & Kwon, 2023). These results 
suggest that decreased SYNGAP1 expression in inhibitory interneu-
rons disrupts sensory representations in S1.

3.5  |  Fragile X messenger ribonucleoprotein 1 (Fmr1)

Fragile X syndrome occurs in individuals with a Fragile X mes-
senger ribonucleoprotein 1 (FMR1) full mutation or other loss-of-
function variant and has high comorbidity with ASD (Kaufmann 
et al., 2017). FMR1 gene codes for the Fragile X mental retardation 
protein (FMRP), which binds to mRNA and regulates synaptic pro-
tein translation (Vithayathil et al., 2018). Importantly, Fmr1 has been 
shown to control voltage-gated calcium channel 2.2 (CaV2.2) sur-
face expression by targeting these channels for degradation (Ferron 
et al., 2014). Fragile X patients have been described to exhibit both 
hypo- and hypersensitivity to tactile stimuli (Heald et  al.,  2020). 
Fmr1 KO mice display ASD-like behaviors, including impaired socia-
bility (Saré et al., 2019), but no deficits in learning and memory (Fisch 
et al., 1999).

Decreased detection thresholds to glabrous skin tactile stimu-
lation and texture discrimination deficits in the tNORT have been 
observed in Fmr1 KO mice (Martin et al., 2022; Orefice et al., 2016), 
including at P20-30 (Pyronneau et  al.,  2017) (although one study 
found no differences between mechanical thresholds of adult Fmr1 
KO and control mice in the Von Frey test (Price et al., 2007)). Hairy 
skin hypersensitivity was also observed in these mice through en-
hanced tactile PPI responses (Orefice et al., 2016). In the gap cross-
ing assay, a whisker-dependent exploration test (Voigts et al., 2015), 
Fmr1 KO mice showed reduced whisker sampling periods, and an 
inability to improve performance with experience, while display-
ing normal exploratory behavior (Arnett et  al.,  2014; Juczewski 
et al., 2016). In accordance with previous reports describing hyper-
excitability of cortical networks (Gonçalves et al., 2013) (possibly be-
cause of deficient feedback inhibition of excitatory neurons (Gibson 
et al., 2008)), Fmr1 KO mice have been shown to exhibit elevated 
neuronal responses in L2/3 of the S1 to both whisker and glabrous 
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    |  9FALCÃO et al.

skin stimulation (Arnett et  al.,  2014; Bhaskaran et  al.,  2023; He 
et  al.,  2019; Juczewski et  al.,  2016; Zhang et  al.,  2014), increased 
trial-by-trial response variability (Bhaskaran et  al.,  2023), and in-
creased inter-stimulus activity (Juczewski et  al.,  2016). Elevated 
spontaneous activity of S1 L2/3 pyramidal neurons and changes in 
S1 upstates, with consequences for sensory information process-
ing, have also been described (Bhaskaran et al., 2023). In addition to 
globally elevated responses in S1, and a faster lateral spread of S1 
excitation to adjacent cortical areas in response to whisker stimula-
tion (Zhang et al., 2014), one of these studies also found increased 
neuronal excitability in S1 L5B neurons mediated hyperpolarization-
activated cyclic nucleotide-gated (HCN) and calcium-activated po-
tassium (BKCa) channels, which could be corrected by boosting BKCa 
with the highly selective BKCa agonist BMS-191011. Local applica-
tion of BMS-191011 to the S1 also rescued responses to hind paw 
stimulation, and normalized spontaneous activity firing (Bhaskaran 
et al., 2023). Altered whisker stimulation frequency encoding by S1 
neurons and a reduction in whisker selectivity index, suggestive of 
degraded somatotopic maps and abnormal receptive fields, were 
also observed in Fmr1 KO mice (Juczewski et al., 2016). Others have 
also reported increases in barrel cortex tuning map sizes (Antoine 
et al., 2019; Arnett et al., 2014), as early as P16/17 (He et al., 2019), 
although the arealization of wS1 and size of individual barrel patch 
areas appear to be normal at P7 and P60 (Harlow et  al.,  2010). 
Reduction of neuronal tuning selectivity in this model also extends 
to paw tactile stimulation responses, with a higher proportion of 
S1-hind paw (S1HP) neurons responding to front paw stimulation 
in Fmr1 KO compared to WT (Bhaskaran et al., 2023). Importantly, 
several alterations of thalamocortical projections to wS1 L4, as well 
as defective wS1 L2-L3 connectivity, during a developmental critical 
period (Bureau et al., 2008; Harlow et al., 2010) have been reported 
in Fmr1 KO and may be contributing to these altered responses 
and somatotopic maps (Antoine et al., 2019; Arnett et al., 2014; He 
et al., 2019). Treatment with bumetanide, an inhibitor of the chlo-
ride co-transporter NKCC1, during the first two postnatal weeks, 
corrected the elevated responses and altered somatotopic maps in 
Fmr1 KO, lasting into adulthood (He et al., 2019). Contrary to these 
observations, another report failed to observe elevated responses 
in L2/L3 of the wS1 in response to whisker stimulation, in both 
young and adult (P14-16 and P35-41, respectively) Fmr1 KO mice 
(He et al., 2017). Nevertheless, the authors observed a 45% reduc-
tion in the number of tuned neurons to whisker stimulation and a 
pronounced deficit in neuronal adaptation to repetitive tactile stim-
uli in these mice (He et al., 2017). In another study, the same group 
showed that parvalbumin (PV), but not somatostatin (SST), interneu-
rons in S1 L2/3 have reduced spontaneous activity and lower evoked 
responses to whisker stimulation in P15 Fmr1 KO mice (Kourdougli 
et al., 2023). Concomitantly, these mice showed a drastic reduction 
in the density of PV-positive cells across all layers of the S1 at P10, 
but also at 9–10 months old. Reduction of both spontaneous and 
whisker-evoked firing rates of fast-spiking interneurons in L2/3 of the 
S1 was also observed in another study, with simultaneous reduction 
of whisker-evoked firing rate and firing synchrony of regular spiking 

neurons (Antoine et al., 2019). Alterations of S1 synchronous activity 
were also present in the early postnatal period, with Fmr1 KO mice 
showing hypoactive medial ganglion eminence (MGE) immature pre-
cursor cells to PV and SST interneurons (Nkx2.1-positive) at P6, and 
a functional decoupling between putative future PV interneurons 
and pyramidal cells at P10 (Kourdougli et  al.,  2023). Interestingly, 
post-critical period (P15-P20), but not early neonatal, chemogenetic 
activation of PV interneurons caused a significant increase in the 
percentage of whisker-responsive pyramidal cells (but no changes 
in response adaptation to whisker stimulation). Administration of 
compound AG00563 (1-(4-methylbenzene-1-sulfonyl)-N-[(1,3-ox
azol-2-yl)methyl]-1H-pyrrole-3-carboxamide), a modulator of the 
voltage-gated Kv3.1 channels expressed by PV interneurons, at any 
time after P15, also increased evoked responses to whisker stim-
ulation, ameliorated the stimulus adaptation deficits, and robustly 
reduced tactile defensive behaviors (Kourdougli et al., 2023). Tactile 
discrimination deficits in this model have also been correlated with 
increased S1 Rac1-PAK1-cofilin signaling and actin polymerization, 
involved in spine morphogenesis and synaptic plasticity, during the 
critical period (Pyronneau et  al.,  2017). Injection of PAK inhibitor 
FRAX486 at P7 rescued altered glutamatergic signaling in S1, and its 
administration both during the critical period or after it rescued the 
tactile behavioral deficits (Pyronneau et al., 2017).

3.6  |  SH3 and multiple ankyrin repeat domains 
2 and 3 (Shank2 and Shank3)

SHANK proteins make up a family of scaffold proteins, located in 
the postsynaptic density (PSD) of excitatory/glutamatergic syn-
apses, that contain multiple sites for protein–protein interaction 
(Monteiro & Feng,  2017; Sala et  al.,  2015) connecting membrane 
receptors to the neuron cytoskeleton (Kim & Sheng, 2004; Phelan 
& McDermid, 2012). Phelan-McDermid syndrome is a neurodevel-
opmental disorder usually associated with ASD, with loss or disrup-
tion of chromosome region 22q13.3, in which the SHANK3 gene is 
present (Phelan & McDermid,  2012). Phelan-McDermid syndrome 
patients have been reported to exhibit alterations in tactile sensi-
tivity, and abnormal sensory-seeking behaviors (Serrada-Tejeda 
et al., 2022). Shank mutant mice show cardinal ASD features includ-
ing deficits in social interaction, repetitive behaviors, and motor co-
ordination deficits, among other impairments (Bozdagi et al., 2010; 
Mei et al., 2016; Peça et al., 2011; Wang et al., 2011).

Shank3B+/− and Shank3B KO, but not heterozygous Shank3∆4–9 
mice, exhibited texture discrimination deficits by displaying no object 
preference in the tNORT (Balasco et al., 2021; Orefice et al., 2016, 
2019). In addition, Shank3B+/− mice also exhibited hairy skin hypersen-
sitivity through enhanced tactile PPI responses (Orefice et al., 2016, 
2019). In the Von Frey test, Shank3 KO mice displayed decreased 
detection thresholds to weak mechanical stimulation of the dom-
inant paw (Deemyad et  al.,  2021). Shank3Δ4–22 homozygous mice, 
which have constitutive disruption of all SHANK3 isoforms, showed 
increased defensive behavior to tactile stimuli through increased 
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10  |    FALCÃO et al.

escape responses to lighter mechanical strokes of hairy skin (Drapeau 
et al., 2018). Tactile-mediated behavioral deficits in Shank3B+/− have 
been correlated with a reduction of HCN1-containing punta in pre-
synaptic terminals in the dorsal horn and loss of HCN1 expression in 
large, but not small, DRG cell bodies (Orefice et al., 2019). Additionally, 
cultured DRG somatosensory neurons from these animals also re-
vealed altered excitability mediated by HCN (Orefice et al., 2019). In 
accordance with these alterations in the peripheral nervous system 
(PNS), selective Shank3 peripheral restoration in somatosensory neu-
rons rescued texture discrimination deficits and hairy skin hypersensi-
tivity (Orefice et al., 2019). Lower detection thresholds in response to 
whisker stimulation, and in particular to weaker stimuli, have also been 
reported in Shank3B KO mice (Chen et al., 2020). This alteration was 
correlated with increased calcium activity of wS1 L2/3 excitatory neu-
rons and decreased activity of inhibitory interneurons, in both sponta-
neous and whisker evoked paradigms (Chen et al., 2020). Conditional 
Shank3 deletion in S1 interneurons recapitulated both the cellular and 
behavioral hyperexcitability/hypersensitivity phenotypes observed in 
KO animals, while conditional Shank3 deletion in S1 excitatory neurons 
led to reduced spontaneous and evoked activity, and a tendency for 
increased detection thresholds (Chen et al., 2020). Contrary to these 
results, whisker hyposensitivity and reduced global S1 activation in re-
sponse to repeated whisker stimulation in the whisker nuisance test 
(WN) have been observed through c-fos mRNA in situ hybridization in 
Shank3B KO mice (Balasco et al., 2021). Another study also reported 
a reduction in the number of PV-expressing cells in the S1 dominant 
hemisphere and a global decrease of PV levels in the S1 (Deemyad 
et al., 2021). This reduction was highly correlated with Von Frey scores 
of glabrous skin tactile hypersensitivity.

Shank2 KO mice have been reported to have reduced base-
line sensitivity and increased glabrous skin detection thresholds 
in response to hind paw stimulation in the Von Frey test (Heuvel 
et al., 2023; Ko et al., 2016). One of these studies also found that 
Shank2 KO mice displayed an increase in the latency to escape a 
chamber with a textured floor (gritty sandpaper), but no preference 
between chambers in a textured version of the two-chamber condi-
tional place preference test (Heuvel et al., 2023).

3.7  |  Homeobox protein engrailed-2 (En2)

Homeobox protein engrailed-2 (EN2) codes for the homeobox-
containing transcription factor Engrailed-2. EN2 is expressed 
throughout CNS development and is important in numerous cell 
biological processes, such as morphological organization and circuit 
connectivity, among others (Choi et al., 2011; Poudel et al., 2022). 
Genetic alterations in the EN2 gene have been previously associated 
with ASD (Carratala-Marco et  al.,  2018). En2 KO mice display im-
pairments in social behaviors, but not in social communication, and 
cognitive deficits in fear memory, novel object recognition, spatial 
learning, and motor coordination (Brielmaier et al., 2012).

Following repeated whisker stimulation in the WN test, En2 KO 
mice displayed elevated fear behavior and reduced c-Fos expression 

in S1 L4 cells (Chelini et al., 2019). Although whisker-guided explor-
atory behavior was comparable to WT, En2 KO mice presented re-
duced basal connectivity between sensory areas, and between the 
SSC and the thalamus (Chelini et al., 2019).

3.8  |  Contactin-associated protein 2 (Cntnap2)

Contactin-associated protein 2 (CNTNAP2) gene codes for the 
contactin-associated protein-like 2 (CASPR2) (George-Hyslop 
et al., 2022), a transmembrane protein that plays a role in cell–cell 
adhesion, extracellular matrix interactions (Rodenas-Cuadrado 
et al., 2014), and synapse formation and functioning (George-Hyslop 
et al., 2022). Mutations in this gene have been linked to human ASD 
(Chen et  al.,  2015; O'Roak et  al.,  2011). Cntnap2 KO mice exhibit 
ASD traits such as social behavior deficits (Jang et al., 2023), learn-
ing impairments, hyperreactivity to thermal stimuli, and increased 
locomotion (Peñagarikano et al., 2011; Thomas et al., 2017).

In the tNORT, Cntnap2 KO mice showed abnormal texture dis-
crimination (while displaying normal exploratory behavior) (Balasco 
et  al.,  2022), as well as tactile hypersensitivity and lower detec-
tion thresholds in the Von Frey test (Dawes et  al.,  2018; Deemyad 
et al., 2021). Contrarily to WT, these mice also showed a preference 
towards rough textures in the Somatosensory Nose-Poke Adapted 
Paradigm (SNAP), a whisker-guided texture-preference test (Binder & 
Bordey, 2023). Whisker stimulation in anesthetized Cntnap2 KO mice 
led to increased c-fos mRNA expression in S1 but not in the ventral pos-
teromedial thalamic nucleus (VPM), when compared with control ani-
mals (Balasco et al., 2022). The same study also reported resting state 
functional hyperconnectivity in Cntnap2 KO mice's SSC, but not be-
tween the SSC and the thalamus, as well as increased cortical VGLUT1 
and 2 expression, suggestive of altered excitation/inhibition (E/I) ratio. 
The latter is also supported by another study reporting a reduced num-
ber of GABAergic (GAD1+) neurons and of PV, Calbindin 2 (CALB2), 
and Neuropeptide Y (NPY) expressing interneurons in the SSC of P14 
Cntnap2 KO mice (Peñagarikano et al., 2011). An asymmetric reduction 
of the number of PV cells and PV expression in the S1 of Cntnap2 KO 
mice was also correlated with glabrous skin tactile hypersensitivity in 
the Von Frey test (Deemyad et al., 2021). Confirming the hypothesis 
of reduced inhibition in Cntnap2 KO mice's S1, another study showed 
a significant reduction of fast-spiking interneurons' firing rate in L2/3 
in response to whisker stimulation, while displaying normal evoked 
firing rate and sensory tuning in regular-spiking neurons (Antoine 
et al., 2019). However, L4 regular spiking units showed abnormally low 
firing rates in response to whisker stimulation, suggestive of L4-L2/3 
network excitability disruption. Increased calcium activity in response 
to hind paw tactile stimulation was also observed in DRG neurons, and 
correlated with loss of Kv1.2 potassium channels in these cells (Dawes 
et al., 2018). Cntnap2 KO mice have also been shown to have abnormal 
activity in the cerebellar Crus I/II region, which is involved in the inte-
gration of sensory inputs from the whiskers (Fernández et al., 2021). 
This was observed for both spontaneous activity and evoked re-
sponses following whisker electrical stimulation.
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    |  11FALCÃO et al.

3.9  |  16p11.2 deletion syndrome (16p11.2del/+)

Deletions, duplications, and copy number variations (CNVs) of the 
human chromosomal region 16p11.2 are linked to multiple neu-
rodevelopmental and neuropsychiatric disorders, including ASD 
(Hippolyte et al., 2016). Patients with either 16p11.2 deletion or du-
plication with a co-occurring diagnosis of ASD show greater levels 
of sensory behaviors in the Sensory Behavior Questionnaire (Smith 
et  al.,  2022). 16p11.2 deletion mutant mice show reduced body 
weight, deficits in novel object memory, and social approach (Lynch 
et al., 2020).

Regarding tactile deficits, 16p11.2 deletion mutant mice 
(16p11.2del/+) exhibited hairy skin hyposensitivity, observed in the 
tactile PPI, yet performed comparably to WT in the tNORT (Orefice 
et al., 2019). Fast spiking interneurons in S1 L2/3 of 16p11.2del/+ mice 
showed significant decreases in firing rate in response to whisker 
stimulation when compared to WT controls (Antoine et al., 2019). 
Despite this reduced inhibition, the spontaneous and evoked firing 
rates of regular spiking neurons in L2/3 were not affected. Unlike 
other models, neuronal tuning to whisker stimulation was normal.

3.10  |  Forkhead box P1 (Foxp1)

The Forkhead box P1 (FOXP1) gene codes for a transcription factor 
of the forkhead box P (FOXP), a subfamily of FOX transcription fac-
tors (Trelles et al., 2021). Mutations in this gene are associated with 
neurodevelopmental syndromes, including ASD (Trelles et al., 2021). 
In mice, Foxp1 haploinsufficiency leads to decreased body weight 
and altered feeding behavior (Fröhlich et  al.,  2019), and brain-
specific deletion leads to impaired short-term memory, impaired so-
cial behavior, and increased repetitive behaviors (Bacon et al., 2015).

Mice with cortex-specific deletion of Foxp1 displayed increased 
tactile defensiveness (in the form of guarding and evasion behaviors) 
in response to repeated whisker stimulation but without an increase 
of c-fos activity in L4 of the S1 which was observed in the WTs (Li 
et al., 2023). The same study also described that cortical deletion of 
Foxp1 led to abnormal barrel formation in the wS1, with an almost 
complete absence of barrel structures. Additionally, these animals 
also showed altered distribution of neurons in the L4 of the S1, as 
well as reduced dendritic arbors and reduced number of spines, sug-
gestive of thalamocortical connectivity alterations.

4  |  DISCUSSION

The studies here reviewed confirm that several genetic mouse mod-
els of ASD display atypical tactile responses as well as sensory tactile 
processing deficits that recapitulate those observed in ASD patients. 
Although the reviewed ASD models represent a highly heterogene-
ous genomic landscape in terms of specific mutations and genes, 
altered tactile sensitivity appears to be a shared phenotype. At the 
behavioral level, the most common findings include lower detection 

thresholds and defensive behaviors in response to tactile stimula-
tion of both the paws and the whiskers (Juczewski et  al.,  2016; 
Kourdougli et  al.,  2023; Peça et  al.,  2011; Pyronneau et  al.,  2017; 
Rougeulle et  al.,  1997; Selby et  al.,  2007), texture discrimination 
deficits (Balasco et al., 2021, 2022; Michaelson et al., 2018; Orefice 
et  al.,  2016, 2019; Pyronneau et  al.,  2017), altered adaptation to 
repetitive tactile stimulus (He et al., 2017), avoidance of novel tex-
tures (McCoy et al., 2017), and impairments in tactile-based learn-
ing tasks (Arnett et al., 2014). This heterogeneous, but consistent, 
constellation of responses is also observed in children and adults 
diagnosed with ASD (Heald et  al.,  2020; Michaelson et  al.,  2018; 
Serrada-Tejeda et al., 2022; Smith et al., 2022; Tavassoli et al., 2012; 
Walz & Baranek, 2006). The functional neurobiological alterations 
underlying these behaviors are less understood, but one advantage 
of using mouse models to study tactile sensory deficits in ASD is 
that they allow the use of more advanced techniques to probe the 
synaptic and circuit-level alterations, such as electrophysiology and 
calcium imaging, and permit cell−/circuit-specific manipulations. The 
studies reviewed here have consistently found that the S1 region is a 
site of tactile processing deficits across models, but the specific im-
pact is heterogeneous and may be dependent on the affected gene. 
Nevertheless, both increased (Arnett et al., 2014; Chen et al., 2020; 
He et al., 2019; Juczewski et al., 2016; Zhang et al., 2014) and de-
creased (Antoine et al., 2019; Balasco et al., 2021; Chelini et al., 2019; 
Chen et al., 2020; Michaelson et al., 2018) global evoked activities in 
the S1 have been reported in response to tactile stimulation, as well as 
alterations in intrinsic neuronal excitability (Bhaskaran et al., 2023), 
synchrony (Antoine et  al.,  2019; Peñagarikano et  al.,  2011), tun-
ing selectivity (Bhaskaran et  al.,  2023), and connectivity (Balasco 
et al., 2022; Bureau et al., 2008) of S1 neuronal cells.

An often proposed hypothesis to explain heightened sensory re-
sponses in ASD at the cellular level is an imbalance in the excitation-
inhibition (E/I) ratio (Lee et  al.,  2017), which can potentially drive 
excessive spiking and responses in S1. This could be because of in-
creased excitation or reduced inhibition, or a combination of both, 
into cortical pyramidal cells. Shank3B KO mice, for example, show 
increased spontaneous and whisker-evoked activity of L2/3 pyra-
midal neurons, while simultaneously having reduced activity of PV 
interneurons (Chen et  al.,  2020). Imbalanced local circuit synap-
tic E/I ratio in S1 has also been shown for Fmr1 KO, Cntnap2 KO, 
16p11.2del/+ (Antoine et al., 2019), and Mecp2−/y (Dani et al., 2005) 
models. Reduced inhibitory signaling can lead to E/I imbalance, and 
alterations of GABAergic markers have been described in several 
postmortem analysis studies of brains from ASD patients (Fatemi 
et al., 2009; Oblak et al., 2011), including in S1 (Puts et al., 2017). 
There is also broad evidence for reduced number/density of inhibi-
tory PV interneurons in the S1 of Fmr1 KO (Kourdougli et al., 2023; 
Selby et al., 2007), Shank3 KO (Deemyad et al., 2021), Cntnap2 KO 
(Peñagarikano et al., 2011), Mecp2 KO (Morello et al., 2018), En2 KO 
(Sgadò et al., 2013), and Syngap1+/− (Berryer et al., 2016) mice, al-
though reduced cell counts may be because of loss of PV expres-
sion and not necessarily cell number reduction (Filice et al., 2016). 
A reduced number of GABAergic (GAD1+) cells, as well as CALB2 
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and NPY-interneurons, was also described for Cntnap2 KO mice 
(Peñagarikano et  al.,  2011). Regardless of changes in densities 
of inhibitory cells, Fmr1 KO, 16p11.2del/+, Cntnap2 KO (Antoine 
et  al.,  2019), Shank3B KO (Chen et  al.,  2020), and Syngap1+/− 
(Michaelson et  al.,  2018) mice showed reduction of S1 inhibitory 
interneurons firing rates or calcium activity. On the other hand, 
abnormal glutamatergic signaling can also contribute to E/I imbal-
ance and increased cortical spiking through excessive excitation, but 
there is less evidence for specific glutamatergic alterations in the 
S1 of ASD mouse models. Although increased cortical expression 
of VGLUT1 and 2 has been shown for Cntnap2 KO mice (Balasco 
et  al.,  2022), several other studies in the mouse models reviewed 
here have shown glutamatergic dysfunction in other brain areas in-
volved in sensory processing and sensorimotor integration such as 
the thalamus, striatum, and cerebellum (Montanari et al., 2022). In 
Syngap1+/− mice, changes in the ratio of AMPA/NMDA receptors 
in thalamocortical neurons conveying tactile information were also 
shown to interfere with synaptic maturation correlated with reduced 
S1 responses to tactile stimulation (Clement et al., 2013; Michaelson 
et al., 2018).

Although increased synaptic E/I ratio and reduced inhibitory ac-
tivity have been described across different models, it is important to 
note that it may not necessarily lead to excessive spiking/hyperac-
tivity in cortical networks. For example, Cntnap2 KO and 16p11.2del/+ 
mice showed reduction of fast-spiking interneurons' firing rate in the 
L2/3 of the S1 in response to whisker stimulation, while displaying 
normal spontaneous and evoked activity in regular-spiking neurons 
(Antoine et al., 2019). Fmr1 KO and Syngap1+/− mice, on the other 
hand, showed reduced whisker-evoked S1 activity despite reduced 
inhibitory activity (Antoine et al., 2019; Michaelson et al., 2018); al-
though multiple studies describe increased global responses in S1 of 
Fmr1 KO (Arnett et al., 2014; He et al., 2019; Juczewski et al., 2016; 
Zhang et al., 2014). A plausible explanation may be related to the dif-
ferential expression and importance of certain genes for interneu-
ron function, such as Shank3, whose loss of function may weaken 
inhibition beyond possible correction by compensatory mechanisms 
(Monday et  al.,  2023). Indeed, strong chemogenetic inhibition of 
PV-interneurons in the wS1 of WT mice can lead to tactile hyper-
reactivity and altered detection thresholds, similar to what is ob-
served in Shank3B KO mice (Chen et al., 2020).

Tactile processing deficits are not only reflected in E/I imbalance 
and changes in cortical spiking rates. Degraded coding of tactile 
stimuli in the somatosensory cortex, which can manifest as blurred 
or expanded somatotopic maps, altered neuronal tuning, and vari-
able or noisy responses, is also a common feature across differ-
ent ASD mouse models, even when E/I balance or tactile-evoked 
somatosensory activity is apparently normal. These alterations 
can interfere with stimulus detection and discrimination and im-
pair performance in tactile-guided learning tasks, the latter having 
been shown for Fmr1 KO and Syngap1+/− mice (Arnett et al., 2014; 
Michaelson et al., 2018; Orefice et al., 2016; Zhao & Kwon, 2023). 
Degraded S1 somatotopic maps and altered neuronal tuning to tac-
tile stimulus have been consistently reported in the Fmr1 KO model 

(He et al., 2019; Juczewski et al., 2016), although it is not evident 
if they have been explicitly tested in other models. For example, 
although altered S1 somatotopic maps have not been reported for 
Ube3a KO and Shank3+/− mice, they show broader and narrower 
tuning than WTs, respectively, in visual cortex (V1) neurons (Ortiz-
Cruz et al., 2022; Wallace et al., 2017). Abnormal anatomical devel-
opment of somatosensory pathways in the forebrain can contribute 
to altered somatotopic maps, and reduced cyto-architectonic segre-
gation of S1 L4 barrels has been found in Syngap1+/− mice (Barnett 
et  al.,  2006), indicating that Syngap1 is necessary for boundary 
formation between S1 barrels (in fact, in mice lacking SYNGAP, 
S1 L4 cells do not aggregate to form barrels (Barnett et al., 2006)). 
However, Fmr1 KO mice showed normal barrel cortex development 
and arealization in the early postnatal period and adulthood (Harlow 
et al., 2010), which suggests that circuit level alterations can also be 
driving degraded maps in some ASD mouse models. Changes in cor-
tical feedforward or lateral connectivity can contribute to the blur-
ring of sensory tuning and expanded cortical maps, as well as local 
circuit E/I imbalance. Cntnap2 KO and Syngap1+/− mice show altered 
S1 L4-L2/3 gain (Antoine et al., 2019; Michaelson et al., 2018), and 
Fmr1 KO mice display faster lateral spreading of responses to tactile 
stimulation in L2/3 (Zhang et al., 2014). Because the thalamus is a 
hub for ascending sensory information in the brain where ascending 
tactile inputs converge before traveling in topographically defined 
fashion to the S1, functional connectivity alterations between the 
thalamus and S1 may also be a cause of abnormal map formation and 
tuning and altered S1 development and arealization (He et al., 2019; 
Juczewski et al., 2016; Zhang et al., 2014). Alterations in thalamo-
cortical connectivity or in the intrinsic electric properties of thal-
amocortical neurons have been reported for the Fmr1 KO (Harlow 
et  al.,  2010), Shank3Δ13–16 (Zhu et  al.,  2018), and Syngap1+/− mod-
els (Clement et al., 2013), as well as in human ASD studies (Green 
et  al.,  2017). Other critical features for neuronal coding of tactile 
stimuli such as neuronal response variability or adaptation to re-
peated stimulation also appear to be altered in the Shank3 (Balasco 
et al., 2021; Chen et al., 2020), and Fmr1 models (He et al., 2017; 
Zhang et  al.,  2014). Increased spontaneous activity firing rates in 
S1 can also contribute to degraded tactile stimulus coding, as the 
stimulus-to-background activity ratio is reduced leading to altered 
stimulus thresholds and discrimination. Accordingly, Shank3B KO 
showed increased spontaneous firing rates in S1, parallel to altered 
stimulus detection thresholds and coding variability to whisker stim-
ulation (Balasco et al., 2021; Chen et al., 2020). Alterations of sponta-
neous firing in other sensory brain areas, such as V1, have also been 
observed for Shank3 KO mice, including when Shank3 was deleted 
in PV interneurons only (Pagano et  al.,  2023), suggesting possible 
cortical-wide E/I dysfunction. On the other hand, S1 spontaneous 
firing rates have been reported to be normal for Fmr1 KO, Cntnap2 
KO, and 16p11.2del/+ mice (Antoine et al., 2019; He et al., 2017).

Understanding the developmental timeline of tactile sensory 
deficits, and how critical periods of development may play a role in 
the establishment or compensation of these deficits, is fundamen-
tal to linking genetic mutations to circuit-level alterations as well 
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as defining when they could be corrected by therapeutic interven-
tions. Abnormal alterations during early postnatal critical periods, 
where heightened plasticity to environmental sensory inputs shape 
the development and stabilization of cortical sensory circuits, can 
also contribute to many of the tactile processing deficits discussed 
here. Importantly, S1 critical period starts before those of other 
cortical sensory primary areas, potentially as early as P0, and has 
a longer duration, extending up to P20/P21 (Pedrosa et al., 2022), 
reinforcing the fundamental function of touch in development, so-
cial bonding, and environment exploration. However, although this 
has been investigated more closely in the Fmr1 KO mouse model, 
whether many of the somatosensory deficits observed occur before, 
after, or during the S1 critical period is an open question for most of 
the other models. Nevertheless, the reduction of interneuron cell 
densities, and in particular of PV interneurons, appears to be con-
sistently altered both in the early postnatal period and adulthood 
across most models (Berryer et  al.,  2016; Deemyad et  al.,  2021; 
Kourdougli et al., 2023; Montanari et al., 2022; Morello et al., 2018; 
Peñagarikano et al., 2011; Sgadò et al., 2013). Because PV cells are 
important regulators of neural circuit plasticity during critical pe-
riods, alterations to PV functioning during development may drive 
persistent functional alterations in S1 in many of the ASD mouse 
models reviewed here. For example, Fmr1 KO mice show clear alter-
ations of network connectivity between PV and pyramidal cells very 
early in development (Kourdougli et al., 2023), and alterations of in-
hibitory activity possibly driving altered E/I ratio, somatotopic maps, 
and neuronal tuning, persist into adulthood. The correct migration, 
organization, and connection of thalamocortical afferents to S1 is 
also dependent on the processing of sensory stimuli during the early 
postnatal period (Antón-Bolaños et al., 2018; Martini et al., 2021). 
Accordingly, many of the reported changes in somatotopic maps, ob-
served as early as P16/17 in Fmr1 KO, may be because of changes in 
these connections. Interestingly, modulation of the juvenile chloride 
co-transporter NKCC1 in Fmr1 KO during the critical period, stabi-
lizes thalamocortical synapses in S1 L4, leading to a remodeling of 
the proteome of the barrel cortex and correction of abnormal so-
matotopic maps.

Although most of the reviewed models show some form of 
altered central processing of tactile information in the S1, the so-
matosensory processing cascade is a gradual path running from the 
peripheral to the central nervous system, mediated by mechanore-
ceptors and somatosensory neurons. Therefore, abnormal develop-
ment/functioning at any steps of the pathway may lead to abnormal 
sensory processing (Balasco et  al.,  2020; Mikkelsen et  al.,  2018). 
In accordance, selective deletion of Mecp2, Gabrb3, and Shank3 at 
P5 and P28 in all peripheral somatosensory neurons led to hairy 
and glabrous skin hypersensitivity and texture discrimination defi-
cits (Orefice et  al.,  2016, 2019). Loss of Mecp2, but not of Ube3a 
maternal allele, in the DRG only also led to tactile hypersensitivity 
(McCoy et al., 2017; Orefice et al., 2016). Although the locus of tac-
tile deficits in ASD most likely does not lie exclusively in peripheral 
receptors and neurons, these can be targeted for improving altered 

behavioral responses. Promising studies have shown that periph-
eral restoration of Mecp2 or Gabrb3 in Mecp2 KO, or Shank3 in 
Shank3 KO mice somatosensory neurons, rescued tactile discrimi-
nation deficits and hairy skin hypersensitivity (Orefice et al., 2016, 
2019). Chronic treatment with isoguvacine, a peripherally restricted 
GABAA receptor agonist that acts directly on mechanosensory neu-
rons, also reduced tactile overreactivity in Mecp2 KO and Shank3 KO 
models (Orefice et  al., 2019). Importantly, even though the tactile 
deficits were present in Mecp2 KO and Shank3 KO mice during the 
early postnatal period, later restoration of these genes' expression 
in somatosensory neurons (at P28) was sufficient to rescue hairy 
skin hypersensitivity. Peripheral administration to the paw of a PAK 
inhibitor, modulating actin dynamics, during or after the critical pe-
riod also rescued glabrous skin hypersensitivity in Fmr1 KO mice 
(Pyronneau et al., 2017).

5  |  CONCLUDING REMARKS

In this review, we highlighted tactile sensory deficits across differ-
ent genetic mouse models of ASD. Given the heterogeneity of the 
phenotypes described, as well as the number of genes involved, it is 
unlikely that a single particular functional alteration or mechanism 
is behind the observed tactile deficits at the behavioral level. It is 
nevertheless clear that these mouse models show marked altera-
tions in tactile information processing, from peripheral receptors 
up to the primary sensory cortex. Notwithstanding the fact that 
the behavioral and functional somatosensory deficits are present 
in both human patients and mouse models of ASD, studies where 
modifying attempts were performed to reverse these alterations 
are outnumbered, and a cautious approach in extrapolating findings 
from mouse models to humans must be considered. Thus, collabo-
rative efforts between researchers and clinicians toward translat-
ing these findings into clinical studies could be groundbreaking. 
Understanding a possible common ground for all these deficits may 
ultimately pave the way for more effective treatments targeting the 
core symptoms of ASD.
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